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Discriminative Similarity Analysis of Passive Auditory
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Abstract— Behavioural diagnosis of patients with dis-
orders of consciousness (DOC) is challenging and prone
to inaccuracies. Consequently, there have been increased
efforts to develop bedside assessment based on EEG and
event-related potentials (ERPs) that are more sensitive to
the neural factors supporting conscious awareness. How-
ever, individual detection of residual consciousness using
these techniques is less established. Here, we hypothesize
that the cross-state similarity (defined as the similarity
between healthy and impaired conscious states) of passive
brain responses to auditory stimuli can index the level
of awareness in individual DOC patients. To this end, we
introduce the global field time-frequency representation-
based discriminative similarity analysis (GFTFR-DSA). This
method quantifies the average cross-state similarity index
between an individual patient and our constructed healthy
templates using the GFTFR as an EEG feature. We demon-
strate that the proposed GFTFR feature exhibits superior
within-group consistency in 34 healthy controls over tra-
ditional EEG features such as temporal waveforms. Sec-
ond, we observed the GFTFR-based similarity index was
significantly higher in patients with a minimally conscious
state (MCS, 40 patients) than those with unresponsive
wakefulness syndrome (UWS, 54 patients), supporting our
hypothesis. Finally, applying a linear support vector ma-
chine classifier for individual MCS/UWS classification, the
model achieved a balanced accuracy and F1 score of 0.77.
Overall, our findings indicate that combining discriminative
and interpretable markers, along with automatic machine
learning algorithms, is effective for the differential diagno-
sis in patients with DOC. Importantly, this approach can, in
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principle, be transferred into any ERP of interest to better
inform DOC diagnoses.
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global field time-frequency representation, mismatch neg-
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I. INTRODUCTION

D ISORDERS of consciousness (DOC) are a class of severe
neurological conditions that include coma, the vegetative

state (VS)—also known as unresponsive wakefulness syn-
drome (UWS)—and the minimally conscious state (MCS).
DOC are primarily caused by traumatic brain injury, and
vascular/anoxic etiologies [1], [2]. Patients with UWS have
regular, or semi-regular, sleep and wake cycles (eyes open;
high arousal) but, nevertheless, show no signs of awareness of
themselves or the surrounding environment [3], [4]. Patients in
a MCS, on the other hand, produce minimal but inconsistent
behavioral evidence of awareness [5]. Accurately differen-
tiating between different levels of awareness is crucial for
guiding treatment and predicting prognosis for DOC patients
[6]. Currently, the Coma Recovery Scale-Revised (CRS-R) is
considered the gold standard for diagnosing DOC patients.
The CRS-R consists of six hierarchical subscales designed
to assess behavioral responses to external stimuli, including
auditory, visual, motor, and oromotor function, as well as
communication ability and level of arousal [7]. However, due
to fluctuations in patients’ level of arousal, or examiners’
proficiency with the CRS-R, the estimated rate of misdiagnosis
among DOC patients approaches 40%, especially if patients
are not regularly assessed [8], [9]. These issues have prompted
researchers to move beyond standardized behavioural mea-
sures and incorporate neurophysiological techniques, such as
electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI), into the assessment protocol [10], [11].

Compared to fMRI, EEG is low-cost, portable, and easy to
apply at a patient’s bedside, making it ideally suited for DOC
patients [12]–[14]. Early investigations into EEG biomarkers
of awareness focused on the spectral characteristics of resting-
state EEG. These biomarkers were gradually summarized
as the ‘ABCD’ model, which organizes changes in EEG
power spectra into four categories, reflecting the severity
of thalamocortical deafferentation (detailed in [15], [16]).
Later studies proposed new measures that capture different
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aspects of EEG activity, such as functional connectivity (e.g.,
weighted symbolic mutual information; [17]) and information-
sharing properties (e.g., permutation entropy and Kolmogorov
complexity; [18], [19]). These measures have been shown to
improve objective discrimination between MCS and UWS pa-
tients compared to previous techniques. Despite the significant
strides in developing novel quantitative indices of awareness,
resting-state paradigms can only assess spontaneous EEG
activity; they cannot capture neural responses to external stim-
ulation. Consequently, event-related potentials (ERPs), which
quantify the EEG responses induced by sensory, cognitive, or
motor stimuli, may provide powerful alternatives to resting-
state EEG in the assessment of DOC patients [20].

One event-related approach, the auditory oddball paradigm,
has been used extensively to assess the residual neural function
of DOC patients. Auditory oddball tasks are designed to
passively elicit discriminative neural responses to a repeated
sound (standard) and a rare sound (deviant) [21]. In this con-
text, these paradigms mainly evaluate: (1) primary sensory pro-
cessing in the auditory cortex, indexed by the N1 component
[22]; and (2) automatic deviance-detection based on sensory
memory, indexed by the mismatch negativity response (MMN)
[23]. Early research demonstrated that the absence of N1 and
MMN components predicted non-awakening in coma patients
with a specificity of 90.9%, commonly preceding conditions
like UWS or worse [21], [24], thereby characterizing these
deficits as indicators of UWS. In contrast, 73.7% of patients
who regained consciousness, typically improving to MCS or
better, exhibited the N1 component, while MMN was detected
with a sensitivity of 30%, indicating an association of N1 with
MCS diagnosis. These findings have informed the application
of passive auditory ERPs in the diagnosis of chronic DOC.
For example, Kotchoubey et al. reported that N1 was more
frequently evoked in MCS than UWS patients, suggesting that
MCS patients may have better-preserved sensory processing
functions than UWS patients [25]. In addition, Boly et al.
found that the backward connectivity from frontal to temporal
cortex, which is involved in generating the MMN, was sig-
nificantly impaired in UWS patients relative to MCS patients
[26]. Furthermore, Faugeras et al. reported that MCS patients
exhibited significantly larger MMN amplitudes than UWS
patients [27]. In contrast, however, Sitt et al. reported that
the topographical pattern of MMN did not differentiate UWS
from MCS patients [28]. These group level inconsistencies
may be due to the difficulties in using conventional participant-
averaged measures (e.g., amplitude and latency) to evaluate
ERP responses across patients with DOC.

Recently, researchers have investigated the use of machine
learning algorithms to automatically quantify neural discrim-
inability (e.g., between standard versus deviant stimuli) using
multi-channel EEG waveforms from individual patients [29]–
[31]. The fundamental hypothesis is that residual auditory
discrimination, indexed by classification scores of EEG re-
sponses to standard or deviant sounds, corresponds to regained
or preserved cognitive functions and/or level of awareness.
For instance, Tzovara et al. developed a topography-based
decoding algorithm and found that the progression of decoding
accuracy (standard versus deviant) during acute coma pre-

dicted individual patient outcomes [30], [32]. Furthermore,
King et al. introduced a time-resolved decoding approach
to detect EEG responses to stimulus novelty, as elicited by
the Local–Global paradigm (see [33] for task description)
[29]. For local patterns indexed by MMN, the decoding
performance did not differ significantly between UWS/MCS
patients. In contrast, P3b responses elicited by higher-order
global stimulus features were found to potentially indicate the
state of awareness. Overall, patient-specific machine learning
approaches that train and test decoding models using passive
ERP data from the same patient may have limited diagnostic
capacity in distinguishing UWS from MCS, despite showing
high predictive performance in comatose patients.

To date, most studies have underutilized the neural re-
sponses derived from healthy controls (HCs), which have
generally been employed as statistical reference levels for
identifying specific functional deficits in DOC patients [17],
[26], [34]. To address this issue, Armanfard et al. proposed
a two-phase machine learning framework for identifying the
MMN component [35]. This approach trained discriminative
sub-spaces to classify neural responses to standard and deviant
tones solely using EEG data from HCs. In patients, the
trained sub-spaces were used to calculate the similarity of
ERP responses between individual patients and HCs. Their
method successfully predicted the recovery of awareness for
two comatose patients, suggesting that the similarity-based
analysis approach may be effective when transferred to DOC
diagnoses. However, no direct single-participant model has
been developed until now.

This study aimed to investigate whether the similarity of
neural responses between DOC patients and HCs could dif-
ferentiate UWS and MCS diagnoses among individual patients
during a passive auditory processing task. To accomplish this,
we developed the global field time-frequency representation-
based discriminative similarity analysis (GFTFR-DSA). First,
four types of candidate features were compared to capture
consistent cross-participant brain patterns elicited by the mis-
match paradigm. The proposed GFTFR feature showed the
highest within-group consistency in 34 HCs and was used
to construct healthy templates. Then, we investigated the
discriminative capacity of cross-state (between DOC patients
and HCs) GFTFR-based similarity in differentiating UWS
(N = 54 patients) from MCS (N = 40 patients) diagnoses
using group-level statistics. Finally, we demonstrated that
incorporating a linear support vector machine (SVM) classifier
with the discriminative similarity indices shows great potential
for clinical applications.

II. DATA DESCRIPTION

A. Participants and EEG Data Acquisition

1) DOC Patients: One hundred patients with chronic DOC
(28+ days since injury) were recruited from the Department
of Neurosurgery, Seventh Medical Center of Chinese PLA
General Hospital, between January 2017 and December 2018.
Experienced neurologists assessed each patient using the CRS-
R scale [7]. Inclusion criteria for this study included: pa-
tients diagnosed as UWS or MCS according to the CRS-R
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TABLE I
INFORMATION ABOUT PARTICIPANTS

Group Number
of participants

Age
(mean±SD)

Time since brain injury
(mo)

CRS-R Score
(mean±SD)

Etiology Gender
(M+F)

Vascular Traumatic Anoxic

HC 34 27.38 ± 2.54 20+18
MCS 40 46.38 ± 14.61 5.65 ± 4.75 11.43 ± 4.23 18 12 10 25+15
UWS 54 44.33 ± 16.91 5.40 ± 4.00 5.72 ± 1.56 16 20 18 34+20

UWS: unresponsive wakefulness syndrome, MCS: minimally conscious state, HC: healthy control, M: male, F: female, mo: month.

scores, who were in stable conditions, and free from skull
deformations. Scalp EEG data was recorded at the patient’s
bedside using a 21-channel Nicolet recording device (Natus
Neurology Inc.) according to the 10/20 International System.
The sampling rate was 1000 Hz, and the impedances of the
electrodes were kept below 10 kΩ. Data were referenced
online at the CPz electrode. After visual inspection of raw
EEG data, six patients were withdrawn due to high levels
of non-physiological noise artifacts. Thus, 54 UWS and 40
MCS patients were retained for further analysis. The relevant
demographics and clinical characteristics are summarized in
Table I. This study was approved by the Ethics Commission of
the Seventh Medical Center of Chinese PLA General Hospital,
and written informed consents were acquired from all the
patients’ families and caregivers.

2) Healthy Controls: Thirty-eight normal-hearing healthy
volunteers participated in the passive auditory ERPs exper-
iment conducted in a sound-attenuated room. None had a
history of neurological or psychiatric illnesses. Participants
were instructed to sit relaxed on their chair and watch the
movie Modern Times by Charlie Chaplin, with the sound
muted. This task was chosen to keep the participants’ attention
from wandering, while requiring minimal effort. No behavioral
response was required during the task. We collected EEG
data with a 64-channel ANT recording device (ANT Neuro,
Enschede) according to the 10/20 International System. We
then reduced the number of electrodes offline to the same
21 channels as used in the DOC group. The sampling rate
was 1000 Hz, and the impedances of the electrodes were
kept below 10 kΩ. Data were referenced online at the CPz
electrode. Following visual inspection of raw EEG data, four
HCs were excluded due to high levels excessive motion
artifacts (detailed in Table I) . This study was approved by the
Ethics Commission of Dalian University of Technology. All
participants gave written informed consent after the nature of
the study was explained to them.

TABLE II
THE ACCEPTED NUMBER OF EPOCHS FOR EACH STIMULUS CONDITION

Group 1000 Hz epochs
(Mean±SD)

1200 Hz deviant-minus-
standard epochs

1050 Hz deviant-minus-
standard epochs

HC 792 ± 11 99 ± 2 99 ± 2
MCS 748 ± 97 92 ± 14 93 ± 14
UWS 737 ± 92 90 ± 15 91 ± 14

UWS: unresponsive wakefulness syndrome, MCS: minimally conscious
state, HC: healthy control.

B. Passive Auditory ERPs Paradigm

The current study used an auditory oddball paradigm con-
sisting of two frequency deviation magnitudes to elicit N1
and MMN, as described in our previous studies [36], [37].
The standard tones were 1000 Hz and pure sounds at 1050
Hz and 1200 Hz served as the small and large deviants.
All pure sounds were 200 ms in duration. The paradigm
consisted of 1000 sound stimuli, which are uninterrupted
and pseudo-randomly presented with the probability of 80%,
10%, and 10% for standard, small, and large deviant stimuli,
respectively. A minimum of three standard stimuli preceded
each deviant. The stimulus onset asynchrony was 1000 ms,
and the experiment lasted approximately 1000 seconds in total.
The stimulus sequence was programed in the Psychophysics
Toolbox Version 3 [38] and delivered through headphones.

C. EEG Data Processing

1) Preprocessing: Preprocessing was conducted on contin-
uous EEG data using MATLAB and the EEGLAB toolbox
[39]. First, EEG data were visually inspected to remove
significant artifacts caused by body movements, amplifier
clipping, or bursts of EEG activity. Channels with excessive
artifacts were interpolated using the spherical spline method.
Continuous EEG data were down-sampled to 250 Hz. Basic
filters embedded in EEGLAB were applied in the following
order: 50 Hz notch filter, 1 Hz high-pass filter, and 30 Hz
low-pass filter. The data were then re-referenced offline to the
mean potential of two mastoid sites. Independent Component
Analysis (ICA) was performed on filtered data using the
InfomaxICA algorithm [40], specifically to remove eye blink
and horizontal eye movement artifacts. We began by reducing
the number of components to 15. Subsequently, the ICLabel
toolbox [41] was used for automatic artifact identification, with
each detected artifact then manually verified. Overall, ocular
artifacts were identified and removed from 34/34 HCs, 25/40
patients with MCS, and 24/50 patients with UWS.

2) Extracting Epochs, Calculating the Difference Waves and
Averaging: The preprocessed EEG data were segmented into
500 ms epochs, time-locked to stimulus onset, and included a
pre-stimulus period of 100 ms (baseline). We then subtracted
the baseline from each trial to ensure that all segments had
the same origin. To isolate MMN component, we subtracted
the preceding standard response from each deviant response to
construct a set of single-trial difference waveforms. Trials with
amplitude exceeding 100 µV were excluded. Table II shows
the accepted number of epochs for each stimulus condition. We
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Fig. 1. Framework of the proposed discriminative similarity analysis.

calculated participant-averaged waveforms across the trials for
three stimulus conditions at each channel. In total, there were
three types of participant-averaged data for each participant:
(a) PA1000 denotes the participant-averaged waveforms across
all standard (1000 Hz) stimuli whereas (b) PA1200 and (c)
PA1050 denote the averaged difference waveforms of 1200 Hz
and 1050 Hz conditions, respectively.

III. PROPOSED DISCRIMINATIVE SIMILARITY ANALYSIS

Fig.1 shows an overview of the proposed framework for
DOC diagnosis (constructing healthy templates using multi-
channel temporal waveform as a feature). This includes the
following steps: (1) extracting a list of candidate features
from participant-averaged waveforms; (2) constructing healthy
templates based on the candidate feature that achieves the
highest within-group consistency; (3) calculating the cross-
state similarity index (SI) of passive auditory brain responses
between each DOC patient and HCs using the selected feature;
and (4) passing the SIs into a linear SVM classifier to
investigate MCS/UWS binary classification performance.

A. Cross-Participant Similarity Index (SI)
We used Pearson’s linear correlation to quantify the cross-

participant similarity of passive auditory brain responses. Here,
A ∈ RC×T and, B ∈ RC×T are the 2-dimensional candidate
features (e.g., temporal waveforms with C channels and T
time-points) extracted from two participants. The SI can then
be calculated as follows [42]:

SI(A,B) =

∑C
c=1

∑T
t=1(Ac,t−A)(Bc,t−B)√

(
∑C

c=1

∑T
t=1(Ac,t −A)2)(

∑C
c=1

∑T
t=1(Bc,t −B)2)

(1)

where c denotes the channel number, c = 1, . . . , C, t denotes
a time-point, t = 1, . . . , T , A and B denote the mean value of
the corresponding matrix. As shown in Fig.1, we consider the

candidate features extracted from HCs as normative templates,
marked as Temp ∈ RC×T . Then, the average ERP-based
SI between a test participant (denoted as A ∈ RC×T ) and
aggregate healthy templates can be calculated as follows:

SI avg(A) =

∑M
m=1 SI(A, Temp

m)

M
(2)

where m = 1, . . . ,M . M denotes the number of healthy
templates and Tempm is the mth HC’s feature template.

B. Candidate Features

In the framework, DOC classification performance depends
on extracting informative and representational EEG features.
Here, we compared four types of multi-dimensional features
computed from participant-averaged waveforms, correspond-
ing to three stimulus conditions.

1) Multi-channel Temporal Waveform (MTW): Initially, we
used the MTW as the first candidate feature. Considering the
three stimulus conditions in the current paradigm, three types
of MTW were obtained for each participant: PA1000R19×125,
PA1200R19×125 and PA1050R19×125 (19 channels × 125 time-
points). Then, the MTW-based SI was computed via (1), and
(2) for each condition, respectively.

2) Global Field Power (GFP): In terms of spatial activation
patterns, ERPs are generated by synchronous brain activity at
specific electrodes. GFP is a measure that characterizes the
global activation pattern and is defined as the time series of
the standard deviation across all electrodes [43]. For a given
spatial map at the tth time-point, A:,t ∈ RC×1, the GFP
amplitude can be computed as:

GFP(A:,t) =

√∑C
c=1(Ac,t −A:,t)2

C
(3)
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where A:,t is the mean value over the C electrodes at the tth
time-point. Then, for a given stimulus condition of MTW, e.g.,
PA1000R19×125, we can obtain GFP (PA1000) ∈ R1×125.

3) Time-Frequency Representation (TFR): To further ex-
plore the time-varying oscillatory properties of EEG time
series, TFR shows promise for detecting and analyzing N1
and MMN components [44], [45]. Here, we adopted a con-
tinuous wavelet transform (CWT) to compute the TFR. For
a given discrete time series of length-T at the cth channel,
Ac,: ∈ R1×T , the CWT is expressed as follows [46]:

CWT(Ac,:) =
1√
|a|

∑T
t=1Ac,tψ(

t− b

a
) (4)

where t denotes a time-point, t = 1, . . . , T , a and b are the
scales and time shifting parameters, respectively. ψ(t) is the
mother wavelet, and ψ( t−b

a ) is the shifted and scaled wavelet.
We selected the complex Morlet wavelets as the ’mother’
wavelet, which defined as [47]:

ψ(t) =
1√
πσ2

e2πifcte
− t2

2σ2

(5)

where σ and fc are frequency bandwidth and central fre-
quency, respectively. We calculated TFRs for each condition
from 1 to 10 Hz in 0.5 Hz steps by applying a CWT on each
EEG channel using the ‘cmor1-1.5’ function in MATLAB.
Baseline subtraction was conducted with a -100 to 0 ms period.

For a given discrete time series at the cth channel (the
green solid line in Fig.2a), Ac,: ∈ R1×T , we can obtain
CWT(Ac,:) ∈ RT×F using equation (4) and (5), where T
and F denote the number of time-point and frequency-point,
respectively. Then, corresponding power (the time-frequency
plot in Fig.2a) and phase can be computed as:

Power(Ac,:) =
CWT(Ac,:)

2

F
(6)

Phase(Ac,:) = arctan(
Im(CWT(Ac,:))

Re(CWT(Ac,:))
) (7)

where arctan(·) denotes the inverse tangent function, Re(·)
and Im(·) denote the the real and imaginary part of a complex
number. As shown in Fig.2b, for the given MTW, A ∈ RC×T ,
the corresponding wavelet transform can be defined as:

CWT(A) = [(Vec(CWT(A1,:)) . . .Vec(CWT(AC,:))]
T (8)

where Vec(·) denotes the matrix-to-vector conversion by con-
catenation of columns, the superscript T denotes the transpose,
and CWT(A) ∈ RC×TF . Finally, as for the single-participant
TFR features, we simultaneously considered the power and
phase characteristics derived from the wavelet transform to
measure the cross-participant similarity of ERP responses. Let
A ∈ RC×T and B ∈ RC×T are the 2-dimensional MTW
extracted from two participants, then, the TFR-based cross-
participant SI can be computed as:

SI(CWT(A),CWT(B)) = Sign(SI(Phase(A),Phase(B)))

· SI(Power(A),Power(B))
(9)

where sign(·) denotes the sign function.

Fig. 2. Flowchart of calculating global field time-frequency represen-
tation. (a) single-channel temporal waveform (green solid line) and its
time-frequency representation; (b) vectorization of single-channel time-
frequency power; (c) global field time-frequency representation.

4) Global Field Time-Frequency Representation (GFTFR):
To characterize the global activation patterns of time-varying
oscillatory time series, we extended the temporal GFP measure
to the time-frequency domain and proposed the novel GFTFR
feature. For a given power-based spatial map at the nth
time-frequency point, Power(A:,n), n = 1, . . . , TF , T and
F denote the number of time-point and frequency-point, as
shown in Fig.2c, the GFTFR amplitude is defined as:

GFP(Power(A:,n)) =

√∑C
c=1(Power(Ac,n)−Power(A;,n))2

C (10)

where c denotes the channel number, c = 1, . . . , C, and
Power(A;,n) denotes the mean power across all electrodes
at the nth time-frequency point. Like (9), the GFTFR-based
cross-participant SI can be computed as:

SI(GTFFP(A),GTFFP(B)) = Sign(SI(Phase(A),Phase(B)))

· SI(GFP(Power(A)),GFP(Power(B)))
(11)

where A ∈ RC×T and B ∈ RC×T are the 2-dimensional
MTW extracted from two participants.

C. Statistical Analysis

1) Group-Level Analysis of ERPs Characteristics: First, one-
tailed t-tests were computed to determine whether the N1
and MMN amplitudes significantly differed from zero, to
first establish the existence of N1 and MMN components.
To control for the use of different EEG devices, cross-group
analysis was restricted to comparisons between MCS and
UWS. Subsequently, we performed a one-way analysis of
variance (ANOVA) to assess the impact of consciousness
state on N1 and MMN amplitudes within these groups. We
quantified the amplitudes at electrode Fz as: the mean value
within a -5 to 5 ms time window centered on the most negative
peak, occurring at 50-150 ms (N1) on the averaged parent
waveforms elicited by all standard stimuli, and at 100-300 ms
(MMN) on the difference waveforms (deviant minus standard).
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2) Feature Selection via the Within-Group Consistency in
HCs: Here, the goal is to construct healthy templates based
on the candidate feature that achieved the highest within-
group similarity consistency in HCs. We conducted a two-
way repeated measures ANOVA to test the effects of feature
types (four: MTW, GFP, TFR and GFTFR) and three stimulus
conditions on the within-group SIs in HCs given by (2).

3) Discriminative Analysis of the Proposed SI in MCS and
UWS Groups: After feature type determination, we computed
an individual SI for each patient in the DOC cohort against a
composite of healthy templates, as given by (2). To evaluate
the discriminative capacity of the proposed measure, we ag-
gregated the single-patient SI from all patients and performed
a two-way repeated measures ANOVA to assess the effects
of consciousness state (MCS and UWS) and three stimulus
conditions. The statistical significance level was set at 0.05.
Bonferroni corrections were applied to adjust for multiple
comparisons regarding the main effect of stimulus conditions
and the significant interaction effects. Statistical analyses were
performed using IBM SPSS Statistics, Version 22.

D. Classification
1) Model and Cross-Validation: We used a linear SVM

classifier [48] to investigate the extent to which the proposed
single-patient SI could differentiate between MCS/UWS. The
classification performance was evaluated using leave one par-
ticipant out cross-validation. In this approach, one patient
was selected for testing, while the remaining 93 patients
were used for training the classifier. This process continued
iteratively until all the participants were selected once, as
the testing participant. Considering the imbalanced datasets,
we employed sensitivity (SEN), specificity (SPE), balanced
accuracy (B ACC) and F1 score, to evaluate the classification
performance, which can be computed as follows [49]:

SEN = TP/(TP + FN) (12)

SPE = TN/(FP + TN) (13)

B ACC = TP/(TP + FN) (14)

F1 = 2× (SEN × SPE)/(SEN + SPE) (15)

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respectively.

2) Comparison of Similarity Combination Strategies: As
there were three types of participant-averaged data (PA1000,
PA1200, and PA1050), we obtained three paired SIs at in-
dividual level. Here, we employed B ACC, SEN, SPE and
F1 score, to investigate the optimal similarity combination in
MCS/UWS classification. In total, there were seven options,
including: three one-condition similarities, three two-condition
similarity vectors and a three-condition similarity vector.

3) Comparison with Traditional Approach: As our approach
was inspired by the method introduced by Armanfard et al.
[35], we compared the individual-level classification perfor-
mance of these two algorithms on the same dataset. The
original method used a combination of feature extraction
(FE) and localized feature selection (LFS) method (hereafter

referred to as FE-LFS), and we applied the same techniques as
suggested in original paper on our dataset [35]. The approach
was performed in three steps: (1) training the FE-LFS model
using data from HCs alone to classify between standard and
deviant conditions; (2) calculating the single-patient similarity
while testing the model with data from DOC patients; (3)
adding the similarities into a SVM classifier to investigate
MCS/UWS classification performance using the leave one
participant out method. The classification performance was
also evaluated by B ACC, SEN, SPE and F1 score.

Fig. 3. Group-averaged waveforms at Fz electrode for different states of
consciousness. Top panel represents the parent waves elicited by stimuli
at frequencies of 1000Hz, 1200Hz, and 1050Hz, with shaded areas
indicating the standard deviation among subjects. Bottom panels shows
the difference waves, calculated by subtracting the EEG responses
to standard stimuli from those to deviant stimuli under corresponding
conditions. UWS: unresponsive wakefulness syndrome, MCS: minimally
conscious state, HC: healthy control, STD: Standard, DEV: deviant.

IV. RESULTS
A. Group-Level Statistics of ERP Characteristics

Fig.3 presents group-averaged waveforms at Fz electrode
across consciousness states. The top panel shows parent waves,
demostrating the N1 component, and the bottom panel illus-
trates difference waves (deviant-minus-standard), revealing the
MMN component. As shown in Table III, all N1 amplitudes
differed significantly from zero in each group (all t ≤ −2.50
and p < 0.05). A one-way ANOVA revealed that absolute N1
amplitudes significantly increased from UWS patients to MCS
patients (F = 11.63, p = 0.001).

For the 1200 Hz deviant stimuli, MMN amplitudes were
significantly different from zero in both HC and MCS groups
(all t ≤ −2.04 and p < 0.05). Conversely, in the UWS
group, the MMN component was not significant (t = −1.27,
p = 0.21). Further analysis using a one-way ANOVA indicated
no notable difference in MMN amplitudes between the MCS
and UWS groups (p = 0.91). Regarding the 1050 Hz deviant
stimuli, the MMN was observed only in the HC group (t =
−6.97, p < 0.001), with no significant components detected
in either the MCS or UWS groups (all t ≥ −0.91 and p ≥
0.37). A One-way ANOVA showed no significant differences
between the MCS and UWS patients (p = 0.49).
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TABLE III
THE MEAN ERP AMPLITUDES FOR THE THREE STIMULUS CONDITIONS IN THREE CONSCIOUSNESS STATES.

Group N1 elicited by 1000 Hz stimuli MMN elicited by 1200 Hz stimuli MMN elicited by 1050 Hz stimuli

Mean ± SD t Mean ± SD t Mean ± SD t

UWS -0.29 ± 0.86 -2.50* -0.20 ± 1.13 -1.27 -0.13 ± 1.03 -0.91
MCS -1.11 ± 1.46 -4.82*** -0.32 ± 0.99 -2.04* -0.10 ± 0.91 -0.70
HC -2.40 ± 1.36 -10.30*** -1.87 ± 1.29 -8.46*** -1.59 ± 1.33 -6.97***

UWS: unresponsive wakefulness syndrome, MCS: minimally conscious state, HC: healthy control. Results of t-tests: ∗p < 0.05, ∗∗∗p < 0.001.

B. Within-Group Consistency of Candidate Features in
HCs

To construct healthy EEG templates that capture consistent
brain patterns across participants, we assessed the within-
group consistency of all candidate features in HCs. Fig.4
presents the within-group consistency of candidate features
in HCs among stimulus conditions (1000 Hz standards, 1200
Hz, and 1050 Hz deviants). Two-way (Feature × Condition)
repeated measures ANOVA on the within-group similarity
revealed a significantly interaction [F = 35.34, p < 0.001],
as well as significant main effects of Feature [F = 92.05,
p < 0.001] and Condition [F = 240.05.63, p < 0.001].

Simple effects analyses revealed that there were significant
differences of individual SIs among feature types in the 1000
Hz, 1200 Hz and 1050 Hz conditions [1000 Hz: F = 66.61,
p < 0.001; 1200 Hz: F = 94.10, p < 0.001; 1050 Hz: F =
47.42, p < 0.001]. As shown in the right panel of Fig.4, the
GFTFR feature consistently achieved the highest within-group
consistency among HCs across all conditions. Specifically, this
was significant in the 1200 Hz condition (all p < 0.05).
Moreover, no significant difference was observed between
GFTFR and TFR at 1000 Hz (mean difference = 0.01), and
similarly, there was no significant difference between GFP
and GFTFR at 1050 Hz (mean difference = 0.05). For the
Condition effect, within-group similarities in HCs significantly
decreased (all p < 0.05) when moving from 1000 Hz standard
stimuli to 1200 Hz, and to 1050 Hz deviant stimuli in all four
types of candidate features [MTW: F = 164.21, p < 0.001;
GFP: F = 50.35, p < 0.001; TFR: F = 157.79, p < 0.001;
GFTFR: F = 44.56, p < 0.001]. Taken together, the GFTFR
feature should be selected to construct healthy templates.

C. Cross-Group Discriminating Results of the
GFTFR-based Cross-State SI

Fig.5 shows the cross-group discriminating results of the
GFTFR-based similarity between MCS and UWS patients
in three stimulus condition. Two-way (Group × Condition)
repeated measures ANOVA on the single-patient SIs revealed
a significant interaction effect [F = 6.01, p < 0.01], as well
as significant main effects of Group [F = 35.66, p < 0.001]
and Condition [F = 19.89, p < 0.001].

Simple effects analyses indicated that the cross-state SIs of
MCS patients were significantly larger than those of UWS
patients in 1000 Hz [F = 19.31, p < 0.001] and 1200 Hz
[F = 24.81, p < 0.001] conditions, but not in 1050 Hz
condition [F = 3.36, p = 0.07]. Additionally, a significant

Fig. 4. Within-group consistency of candidate features in HCs under
three stimulus conditions. Left panel: cross-participant similarity matri-
ces of GFTFR feature; middle panel: histograms of individual similarity
indices derived from the average GFTFR-based similarities between sin-
gle participants and other HCs; right panel: statistical results of similarity
index for candidate features. MTW: multi-channel temporal waveforms;
GFP: global field power; TFR: time-frequency representation; GFTFR:
global field time-frequency representation; HC: healthy control.
∗ denotes p < 0.05; ∗∗ denotes p < 0.01; ∗∗∗ denotes p < 0.001.

difference in similarity was found only in the Condition factor
for MCS patients [F = 26.10, p < 0.001]. Post hoc analysis
revealed that SIs in 1000 Hz condition were significantly
larger than that of 1200 Hz and 1050 Hz conditions (all
p < 0.05), whereas no such significant difference was found
in the latter conditions (p = 0.23). Overall, the group-level
statistics suggest that the GFTFR-based cross-state SI is a
highly discriminative measure for UWS and MCS.

D. Individual MCS/UWS Classification Performance

Fig.6a illustrates the linearly separable distribution of the
GFTFR-based SI at 1000 Hz and 1200 Hz, which significantly
separates MCS from UWS. Consequently, we incorporated
these discriminative SIs into a linear SVM classifier for
MCS/UWS binary classification. Table IV shows the classifi-
cation performance for different similarity combination strate-
gies. Notably, the model achieved the highest performance,
with balanced accuracy, sensitivity, specificity, and F1 score
of 0.77, 0.73, 0.81, and 0.77, respectively, when using the
three-condition similarity vectors as individual samples.
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Fig. 5. Cross-group discriminating results of the GFTFR-based similarity between MCS and UWS patients in three stimulus conditions. Left panel:
cross-state similarity matrices between patients with DOC and healthy templates; middle panel: histograms of individual patient similarity index,
deriving from the average cross-state similarities between each DOC patient and all healthy templates; left panel: statistical results of GFTFR-based
similarity index. GFTFR: global field time-frequency representation; DOC: disorders of consciousness; UWS: unresponsive wakefulness syndrome,
MCS: minimally conscious state. ∗ denotes p < 0.05; ∗∗ denotes p < 0.01; ∗∗∗ denotes p < 0.001.

Fig. 6. (a) Linearly separable distribution of GFTFR-Based similarity
index at 1000 Hz and 1200 Hz; (b) Confusion matrices for FE-LFS and
GFTFR-DSA methods; (c) Classification performance indices for above
methods. FE-LFS: feature extraction combines localized feature selec-
tion method proposed by Armanfard et al. [35]; GFTFR-DSA: global field
time-frequency representation-based discriminative similarity analysis
proposed in this study. UWS: unresponsive wakefulness syndrome,
MCS: minimally conscious state.

Moreover, as for the comparison with the traditional ap-
proach, Fig.6b,c illustrates the confusion matrices and per-
formance indices for FE-LFS and GFTFR-DSA methods.
In short, our proposed approach achieved a much better
MCS/UWS classification performance, with the F1 score in-
creasing from 0.43 to 0.77.

E. Effects of Clinical Factors on Classification Accuracy

Finally, to evaluate the effects of clinical factors on diagno-
sis performance, we performed a one-way repeated measures
ANOVA on diagnosis accuracy (true and false predictions were
defined as 1 and 0) for three critical clinical factors (Etiology,
Course of Disease, and Age). As shown in Fig.7, a significant
difference was only observed in Age [F = 3.89, p = 0.02] but
not in Etiology [F = 0.29, p = 0.75] or Course of Disease
[F = 0.16, p = 0.85]. Post hoc analysis revealed that our
method achieved significantly higher classification accuracies
in patients ≤ 40 years than in patients between 40 and 55 years
(mean = 0.656, p = 0.021) and ≥ 55 years (mean = 0.742,
p = 0.152). No significant difference was observed in the
latter two groups. Overall, the current results suggest that our
technique is robust in the face of various clinical factors.

V. DISCUSSION

In this study, we introduced a novel approach that combines
the GFTFR-based cross-state similarity and machine learning
classifiers to assess the severity of chronic DOC. Overall,
this study presents three novel techniques that complement
conventionally methods of DOC assessment. To the best of
our knowledge, we are the first to apply the GFTFR feature
to characterize the temporal, spectral, and spatial signatures
of dynamic EEG activity in this patient group. Among the
four types of candidate features, GFTFR achieved the high-
est within-group similarity in HCs. Additionally, to capture
the time-varying oscillatory properties of EEG, the proposed
cross-participant SI simultaneously quantified the power and
phase characteristics derived from the wavelet transform.
Moreover, we sought to determine the level of awareness
in individual DOC patients using GFTFR-based cross-state
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TABLE IV
THE CLASSIFICATION PERFORMANCE FOR DIFFERENT SIMILARITY COMBINATION STRATEGIES

Index 1050 Hz 1200 Hz 1000 Hz 1050 Hz &
1200 Hz

1050 Hz &
1000 Hz

1200 Hz &
1000 Hz

1050 Hz &
1200 Hz & 1000 Hz

Sensitivity 0 0.38 0.73 0.35 0.70 0.73 0.73
Specificity 1 0.80 0.76 0.81 0.78 0.78 0.81

Balanced Accuracy 0.50 0.59 0.74 0.58 0.74 0.75 0.77
F1 Score 0 0.52 0.74 0.49 0.74 0.75 0.77

Fig. 7. Effects of three critical clinical factors on classification accuracy.
The proportion of patients in (a) etiology (b) course of disease and (c)
age factors; (d) - (f) represent the individual-level classification accuracy
for the above clinical factors.

(between patients and HCs) SIs, which are readily interpretable
and discriminative of conscious state.

A. GFTFR Uncovers the Consistent Characteristics of
Passive Auditory ERPs in HCs

The mark of an effective DOC diagnosis is high within-
group consistency (e.g., similar index strengths among HCs)
and large cross-group differences (e.g., individuals diagnosed
with various levels of severity demonstrate significantly dif-
ferent strengths). However, inherent individual variability of
EEG/ERPs can critically affect the former [50]. Consequently,
capturing the shared activation patterns among HCs using
the appropriate features improves within-group consistency
significantly. Our results indicated that the proposed GFTFR
feature achieved significantly higher within-group similarities
between HCs than the other candidate features. We speculate
that two factors may account for these results. First, GFTFR is
effective in capturing the frequency-specific properties of time-
locked N1 and MMN components. Previous investigations
reported that N1 and MMN components predominantly consist
of activity in the theta band (≈ 4–8 Hz). Researchers have also
demonstrated the advantages of quantifying theta oscillations

over the temporal measures [44], [51]. For example, Bishop
and Hardiman were able to identify a theta-band phase-locking
enhancement in 82% of their participants but this drops to 70%
if the MMN was analyzed in the time domain [44]. The present
study found that within-group similarities of time-frequency
features were significantly higher than that of temporal wave-
forms, in line with the previous studies. Moreover, GFTFR
might benefit from the dimension reduction process through
calculating the standard deviations across channels. Compared
to multi-channel waveforms, GFP can characterize the global
activation pattern in a relatively low spatial dimension (i.e.,
the number of spatial dimensions reduced from the number of
electrodes to 1; [43]). Taken together, these findings suggest
that GFTFR can be useful when analyzing the cross-participant
consistent characteristics of passive auditory ERPs.

Regarding the stimulus conditions, we found that the within-
group SIs in HCs significantly decreased when moving from
1000 Hz standard stimuli to 1200 Hz deviant stimuli, and to
1050 Hz deviant stimuli in all candidate features. The differ-
ences of signal-to-noise-ratio (SNR) across conditions were
supposed to explain the significant effect of stimulus condi-
tions. The SNR increases in proportion to the square root of the
number of trials [20]. Our paradigm consisted of 800 standards
and 100 deviants (e.g., 1200 Hz deviant stimulus) and the
present study extracted the candidate features on the averaged
waveforms across trials for each condition. Consequently,
the SNR of standard condition is 2.83 (

√
800/

√
100) times

that of deviant condition, which determined the significant
difference of within-group similarities between standard and
deviant stimulus. In addition, an important property of MMN
is that its amplitude (indexing the SNR) increases alongside
the magnitude of sound change [52]. Our results confirmed
that 1200 Hz deviants elicited larger MMN amplitudes (-1.87
± 1.29 µV) than that of 1050 Hz deviants (-1.59 ± 1.33
µV), which led to the significant difference of within-group
SI between two deviance magnitudes.

B. GFTFR-based Cross-State SI Provides Signature in
UWS versus MCS Diagnosis

We hypothesized that the cross-state SI (between DOC pa-
tients and aggregate HCs) of passive auditory brain responses
would correspond to conscious state. Our results showed that
the proposed GFTFR-based cross-state SI of MCS patients
were significantly higher than that of UWS patients, which
supported our initial hypothesis. Our results are generally
consistent with previous findings, as they demonstrated that
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MCS patients showed cortical activation that was more similar
to HCs, relative to UWS patients [17], [26], [34]. Notably,
there were significant SI differences between MCS and UWS
patients, whereas a significant cross-group difference was only
observed in N1 amplitudes elicited by 1000 Hz standard
stimuli. Our approach, therefore, has advantages in separating
UWS from MCS over conventional ERPs analysis. Addition-
ally, the proposed cross-state SI is easy to interpret, which
may be advantageous in clinical settings.

Moreover, we demonstrated the use of machine learning
for individual-level DOC diagnosis. Among various similarity
combinations, the model achieved the best performance when
using the three-condition similarity vectors to construct the
input samples. This may indicate that N1 and MMN may
provide complementary information in DOC assessment. In
practice, several studies have suggested that this is the case,
as they regarded the presence of N1 as a prerequisite for
accurately measuring MMN [24], [34], emphasizing that using
multiple EEG components derived from the same paradigm
may improve the accuracy of DOC diagnosis and prognosis
[14].Our study demonstrated the added value of combin-
ing N1 and MMN components to facilitate chronic DOC
assessment. In summary, our findings demonstrate that the
proposed GFTFR-based cross-state SI performs well when
indexing conscious state, and enables the automatic diagnosis
of individuals with machine learning techniques.

Notably, there are several limitations in the present study.
First, in terms of training the MCS/UWS binary classifier, we
derived the ground-truth using the CRS-R assessment, which
may fail to accurately diagnose DOC patients. As a recent
review suggested, this problem should be addressed in future
studies by refining the diagnostic labels using additional multi-
paradigm and multi-modality markers [15]. In addition, our
healthy controls were younger overall and from a narrower
age range than our patients with DOC. As there is evidence
showing that the N1 and MMN characteristics change with
age, the diagnostic performance of the proposed method
could potentially be skewed [53]. Furthermore, in the patient
population, MMN may exhibit waxing and waning patterns,
leading to instances where it could go undetected after ag-
gregate averaging [35], [54]. Our current study has not yet
explored MMN detection on this finer temporal scale, which
might result in MCS patients who do possess MMN being
overlooked in such aggregate analyses, thereby affecting the
overall diagnostic performance. Taken together, with refined
diagnostic labels, age-related alterations, and analysis on a
finer temporal scale, it is to be expected that further work
will improve diagnostic performance in DOC even further.

VI. CONCLUSION

In conclusion, this study introduces a novel machine learn-
ing approach, known as GFTFR-DSA, for neurophysiology-
based diagnosis of DOCs. The proposed GFTFR features
effectively capture shared EEG characteristics in terms of
within-group consistency among healthy controls. By quanti-
fying the GFTFR-based similarity between healthy and im-
paired conscious states, we have demonstrated that cross-
state similarity can index the level of awareness in DOC

patients. Moreover, incorporating discriminative markers with
automatic SVM classifiers, our method enhances differential
diagnosis in individual-level MCS/UWS discrimination. Over-
all, this approach complements conventional methods of DOC
assessment and can be extended to any ERP of interest to
better inform DOC diagnoses.
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